The Derived Category of Quasi-coherent Sheaves and Axiomatic Stable Homotopy

نویسنده

  • LEOVIGILDO ALONSO
چکیده

We prove in this paper that for a quasi-compact and semiseparated (non necessarily noetherian) scheme X, the derived category of quasi-coherent sheaves over X, D(Aqc(X)), is a stable homotopy category in the sense of Hovey, Palmieri and Strickland, answering a question posed by Strickland. Moreover we show that it is unital and algebraic. We also prove that for a noetherian semi-separated formal scheme X, its derived category of sheaves of modules with quasi-coherent torsion homologies Dqct(X) is a stable homotopy category. It is algebraic but if the formal scheme is not a usual scheme, it is not unital, therefore its abstract nature differs essentially from that of the derived category Dqc(X) (which is equivalent to D(Aqc(X))) in the case of a usual scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fe b 20 09 PRODUCTS , HOMOTOPY LIMITS AND APPLICATIONS

In this note, we discuss the derived functors of infinite products and homotopy limits. QC(X), the category of quasi-coherent sheaves on a Deligne-Mumford stack X , usually has the property that the derived functors of product vanish after a finite stage. We use this fact to study the convergence of certain homotopy limits and apply it compare the derived category of QC(X) with certain other cl...

متن کامل

Descent for Quasi-coherent Sheaves on Stacks

We give a homotopy theoretic characterization of sheaves on a stack and, more generally, a presheaf of groupoids on an arbitary small site C. We use this to prove homotopy invariance and generalized descent statements for categories of sheaves and quasi-coherent sheaves. As a corollary we obtain an alternate proof of a generalized change of rings theorem of Hovey.

متن کامل

Perverse Coherent Sheaves on the Nilpotent Cone in Good Characteristic

In characteristic zero, Bezrukavnikov has shown that the category of perverse coherent sheaves on the nilpotent cone of a simply connected semisimple algebraic group is quasi-hereditary, and that it is derived-equivalent to the category of (ordinary) coherent sheaves. We prove that graded versions of these results also hold in good positive characteristic.

متن کامل

Descent of Coherent Sheaves and Complexes to Geometric Invariant Theory Quotients

Fix a quasi-projective scheme X over a field of characteristic zero that is equipped with an action of a reductive algebraic group G. Fix a polarization H of X that linearizes the G-action. We give necessary and sufficient conditions for a G-equivariant coherent sheaf on X to descend to the GIT quotient X/G, or for a bounded-above complex of G-equivariant coherent sheaves on X to be G-equivaria...

متن کامل

Descent of Coherent Sheaves and Complexes to Geometric Invariant Theory Quotients: Draft

Fix a quasi-projective scheme X over a field of characteristic zero that is equipped with an action of a reductive algebraic group G. Fix a polarization H of X that linearizes the G-action. We give necessary and sufficient conditions for a G-equivariant coherent sheaf on X to descend to the GIT quotient X/G, or for a bounded-above complex of G-equivariant coherent sheaves on X to be G-equivaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008